3.23.26 \(\int \frac {(d+e x)^2 (f+g x)}{(c d^2-b d e-b e^2 x-c e^2 x^2)^{5/2}} \, dx\) [2226]

3.23.26.1 Optimal result
3.23.26.2 Mathematica [A] (verified)
3.23.26.3 Rubi [A] (verified)
3.23.26.4 Maple [A] (verified)
3.23.26.5 Fricas [A] (verification not implemented)
3.23.26.6 Sympy [F]
3.23.26.7 Maxima [F(-2)]
3.23.26.8 Giac [F(-2)]
3.23.26.9 Mupad [B] (verification not implemented)

3.23.26.1 Optimal result

Integrand size = 44, antiderivative size = 146 \[ \int \frac {(d+e x)^2 (f+g x)}{\left (c d^2-b d e-b e^2 x-c e^2 x^2\right )^{5/2}} \, dx=\frac {2 (c e f+c d g-b e g) (d+e x)^2}{3 c e^2 (2 c d-b e) \left (d (c d-b e)-b e^2 x-c e^2 x^2\right )^{3/2}}+\frac {2 (2 c e f-4 c d g+b e g) (d+e x)}{3 c e^2 (2 c d-b e)^2 \sqrt {d (c d-b e)-b e^2 x-c e^2 x^2}} \]

output
2/3*(-b*e*g+c*d*g+c*e*f)*(e*x+d)^2/c/e^2/(-b*e+2*c*d)/(d*(-b*e+c*d)-b*e^2* 
x-c*e^2*x^2)^(3/2)+2/3*(b*e*g-4*c*d*g+2*c*e*f)*(e*x+d)/c/e^2/(-b*e+2*c*d)^ 
2/(d*(-b*e+c*d)-b*e^2*x-c*e^2*x^2)^(1/2)
 
3.23.26.2 Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 100, normalized size of antiderivative = 0.68 \[ \int \frac {(d+e x)^2 (f+g x)}{\left (c d^2-b d e-b e^2 x-c e^2 x^2\right )^{5/2}} \, dx=\frac {2 (d+e x) \left (b e (3 e f-2 d g+e g x)+2 c \left (d^2 g+e^2 f x-2 d e (f+g x)\right )\right )}{3 e^2 (-2 c d+b e)^2 (-c d+b e+c e x) \sqrt {(d+e x) (-b e+c (d-e x))}} \]

input
Integrate[((d + e*x)^2*(f + g*x))/(c*d^2 - b*d*e - b*e^2*x - c*e^2*x^2)^(5 
/2),x]
 
output
(2*(d + e*x)*(b*e*(3*e*f - 2*d*g + e*g*x) + 2*c*(d^2*g + e^2*f*x - 2*d*e*( 
f + g*x))))/(3*e^2*(-2*c*d + b*e)^2*(-(c*d) + b*e + c*e*x)*Sqrt[(d + e*x)* 
(-(b*e) + c*(d - e*x))])
 
3.23.26.3 Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.068, Rules used = {1218, 1124, 24}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(d+e x)^2 (f+g x)}{\left (-b d e-b e^2 x+c d^2-c e^2 x^2\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 1218

\(\displaystyle \frac {(b e g-4 c d g+2 c e f) \int \frac {d+e x}{\left (-c x^2 e^2-b x e^2+d (c d-b e)\right )^{3/2}}dx}{3 c e (2 c d-b e)}+\frac {2 (d+e x)^2 (-b e g+c d g+c e f)}{3 c e^2 (2 c d-b e) \left (d (c d-b e)-b e^2 x-c e^2 x^2\right )^{3/2}}\)

\(\Big \downarrow \) 1124

\(\displaystyle \frac {(b e g-4 c d g+2 c e f) \left (e^2 \int 0dx+\frac {2 (d+e x)}{e (2 c d-b e) \sqrt {d (c d-b e)-b e^2 x-c e^2 x^2}}\right )}{3 c e (2 c d-b e)}+\frac {2 (d+e x)^2 (-b e g+c d g+c e f)}{3 c e^2 (2 c d-b e) \left (d (c d-b e)-b e^2 x-c e^2 x^2\right )^{3/2}}\)

\(\Big \downarrow \) 24

\(\displaystyle \frac {2 (d+e x)^2 (-b e g+c d g+c e f)}{3 c e^2 (2 c d-b e) \left (d (c d-b e)-b e^2 x-c e^2 x^2\right )^{3/2}}+\frac {2 (d+e x) (b e g-4 c d g+2 c e f)}{3 c e^2 (2 c d-b e)^2 \sqrt {d (c d-b e)-b e^2 x-c e^2 x^2}}\)

input
Int[((d + e*x)^2*(f + g*x))/(c*d^2 - b*d*e - b*e^2*x - c*e^2*x^2)^(5/2),x]
 
output
(2*(c*e*f + c*d*g - b*e*g)*(d + e*x)^2)/(3*c*e^2*(2*c*d - b*e)*(d*(c*d - b 
*e) - b*e^2*x - c*e^2*x^2)^(3/2)) + (2*(2*c*e*f - 4*c*d*g + b*e*g)*(d + e* 
x))/(3*c*e^2*(2*c*d - b*e)^2*Sqrt[d*(c*d - b*e) - b*e^2*x - c*e^2*x^2])
 

3.23.26.3.1 Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 1124
Int[((d_.) + (e_.)*(x_))^(m_.)/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(3/2), x 
_Symbol] :> Simp[-2*e*(2*c*d - b*e)^(m - 2)*((d + e*x)/(c^(m - 1)*Sqrt[a + 
b*x + c*x^2])), x] + Simp[e^2/c^(m - 1)   Int[(1/Sqrt[a + b*x + c*x^2])*Exp 
andToSum[((2*c*d - b*e)^(m - 1) - c^(m - 1)*(d + e*x)^(m - 1))/(c*d - b*e - 
 c*e*x), x], x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c*d^2 - b*d*e + a*e 
^2, 0] && IGtQ[m, 0]
 

rule 1218
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + ( 
c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(g*(c*d - b*e) + c*e*f)*(d + e*x)^m*(( 
a + b*x + c*x^2)^(p + 1)/(c*(p + 1)*(2*c*d - b*e))), x] - Simp[e*((m*(g*(c* 
d - b*e) + c*e*f) + e*(p + 1)*(2*c*f - b*g))/(c*(p + 1)*(2*c*d - b*e)))   I 
nt[(d + e*x)^(m - 1)*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d 
, e, f, g}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && GtQ[m, 0]
 
3.23.26.4 Maple [A] (verified)

Time = 0.86 (sec) , antiderivative size = 123, normalized size of antiderivative = 0.84

method result size
trager \(\frac {2 \left (-b \,e^{2} g x +4 c d e g x -2 c \,e^{2} f x +2 b d e g -3 b \,e^{2} f -2 c \,d^{2} g +4 c d e f \right ) \sqrt {-c \,e^{2} x^{2}-b \,e^{2} x -b d e +c \,d^{2}}}{3 \left (b^{2} e^{2}-4 b c d e +4 c^{2} d^{2}\right ) \left (x c e +b e -c d \right )^{2} e^{2}}\) \(123\)
gosper \(-\frac {2 \left (e x +d \right )^{3} \left (x c e +b e -c d \right ) \left (-b \,e^{2} g x +4 c d e g x -2 c \,e^{2} f x +2 b d e g -3 b \,e^{2} f -2 c \,d^{2} g +4 c d e f \right )}{3 e^{2} \left (b^{2} e^{2}-4 b c d e +4 c^{2} d^{2}\right ) \left (-c \,e^{2} x^{2}-b \,e^{2} x -b d e +c \,d^{2}\right )^{\frac {5}{2}}}\) \(128\)
default \(\text {Expression too large to display}\) \(1462\)

input
int((e*x+d)^2*(g*x+f)/(-c*e^2*x^2-b*e^2*x-b*d*e+c*d^2)^(5/2),x,method=_RET 
URNVERBOSE)
 
output
2/3*(-b*e^2*g*x+4*c*d*e*g*x-2*c*e^2*f*x+2*b*d*e*g-3*b*e^2*f-2*c*d^2*g+4*c* 
d*e*f)/(b^2*e^2-4*b*c*d*e+4*c^2*d^2)/(c*e*x+b*e-c*d)^2/e^2*(-c*e^2*x^2-b*e 
^2*x-b*d*e+c*d^2)^(1/2)
 
3.23.26.5 Fricas [A] (verification not implemented)

Time = 1.56 (sec) , antiderivative size = 227, normalized size of antiderivative = 1.55 \[ \int \frac {(d+e x)^2 (f+g x)}{\left (c d^2-b d e-b e^2 x-c e^2 x^2\right )^{5/2}} \, dx=\frac {2 \, \sqrt {-c e^{2} x^{2} - b e^{2} x + c d^{2} - b d e} {\left ({\left (4 \, c d e - 3 \, b e^{2}\right )} f - 2 \, {\left (c d^{2} - b d e\right )} g - {\left (2 \, c e^{2} f - {\left (4 \, c d e - b e^{2}\right )} g\right )} x\right )}}{3 \, {\left (4 \, c^{4} d^{4} e^{2} - 12 \, b c^{3} d^{3} e^{3} + 13 \, b^{2} c^{2} d^{2} e^{4} - 6 \, b^{3} c d e^{5} + b^{4} e^{6} + {\left (4 \, c^{4} d^{2} e^{4} - 4 \, b c^{3} d e^{5} + b^{2} c^{2} e^{6}\right )} x^{2} - 2 \, {\left (4 \, c^{4} d^{3} e^{3} - 8 \, b c^{3} d^{2} e^{4} + 5 \, b^{2} c^{2} d e^{5} - b^{3} c e^{6}\right )} x\right )}} \]

input
integrate((e*x+d)^2*(g*x+f)/(-c*e^2*x^2-b*e^2*x-b*d*e+c*d^2)^(5/2),x, algo 
rithm="fricas")
 
output
2/3*sqrt(-c*e^2*x^2 - b*e^2*x + c*d^2 - b*d*e)*((4*c*d*e - 3*b*e^2)*f - 2* 
(c*d^2 - b*d*e)*g - (2*c*e^2*f - (4*c*d*e - b*e^2)*g)*x)/(4*c^4*d^4*e^2 - 
12*b*c^3*d^3*e^3 + 13*b^2*c^2*d^2*e^4 - 6*b^3*c*d*e^5 + b^4*e^6 + (4*c^4*d 
^2*e^4 - 4*b*c^3*d*e^5 + b^2*c^2*e^6)*x^2 - 2*(4*c^4*d^3*e^3 - 8*b*c^3*d^2 
*e^4 + 5*b^2*c^2*d*e^5 - b^3*c*e^6)*x)
 
3.23.26.6 Sympy [F]

\[ \int \frac {(d+e x)^2 (f+g x)}{\left (c d^2-b d e-b e^2 x-c e^2 x^2\right )^{5/2}} \, dx=\int \frac {\left (d + e x\right )^{2} \left (f + g x\right )}{\left (- \left (d + e x\right ) \left (b e - c d + c e x\right )\right )^{\frac {5}{2}}}\, dx \]

input
integrate((e*x+d)**2*(g*x+f)/(-c*e**2*x**2-b*e**2*x-b*d*e+c*d**2)**(5/2),x 
)
 
output
Integral((d + e*x)**2*(f + g*x)/(-(d + e*x)*(b*e - c*d + c*e*x))**(5/2), x 
)
 
3.23.26.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {(d+e x)^2 (f+g x)}{\left (c d^2-b d e-b e^2 x-c e^2 x^2\right )^{5/2}} \, dx=\text {Exception raised: ValueError} \]

input
integrate((e*x+d)^2*(g*x+f)/(-c*e^2*x^2-b*e^2*x-b*d*e+c*d^2)^(5/2),x, algo 
rithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e*(b*e-2*c*d)>0)', see `assume?` 
 for more
 
3.23.26.8 Giac [F(-2)]

Exception generated. \[ \int \frac {(d+e x)^2 (f+g x)}{\left (c d^2-b d e-b e^2 x-c e^2 x^2\right )^{5/2}} \, dx=\text {Exception raised: TypeError} \]

input
integrate((e*x+d)^2*(g*x+f)/(-c*e^2*x^2-b*e^2*x-b*d*e+c*d^2)^(5/2),x, algo 
rithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Unable to divide, perhaps due to ro 
unding error%%%{%%%{1,[6,0,10,2]%%%}+%%%{-10,[5,1,9,3]%%%}+%%%{41,[4,2,8,4 
]%%%}+%%%
 
3.23.26.9 Mupad [B] (verification not implemented)

Time = 11.94 (sec) , antiderivative size = 107, normalized size of antiderivative = 0.73 \[ \int \frac {(d+e x)^2 (f+g x)}{\left (c d^2-b d e-b e^2 x-c e^2 x^2\right )^{5/2}} \, dx=-\frac {2\,\sqrt {c\,d^2-b\,d\,e-c\,e^2\,x^2-b\,e^2\,x}\,\left (3\,b\,e^2\,f+2\,c\,d^2\,g+b\,e^2\,g\,x+2\,c\,e^2\,f\,x-2\,b\,d\,e\,g-4\,c\,d\,e\,f-4\,c\,d\,e\,g\,x\right )}{3\,e^2\,{\left (b\,e-2\,c\,d\right )}^2\,{\left (b\,e-c\,d+c\,e\,x\right )}^2} \]

input
int(((f + g*x)*(d + e*x)^2)/(c*d^2 - c*e^2*x^2 - b*d*e - b*e^2*x)^(5/2),x)
 
output
-(2*(c*d^2 - c*e^2*x^2 - b*d*e - b*e^2*x)^(1/2)*(3*b*e^2*f + 2*c*d^2*g + b 
*e^2*g*x + 2*c*e^2*f*x - 2*b*d*e*g - 4*c*d*e*f - 4*c*d*e*g*x))/(3*e^2*(b*e 
 - 2*c*d)^2*(b*e - c*d + c*e*x)^2)